ENGINEERING TOMORROW

Data Sheet

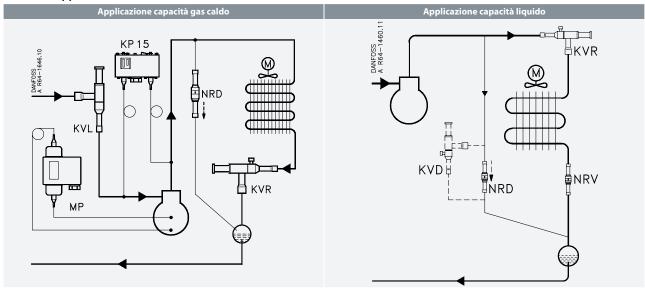
Regolatore della pressione di condensazione, tipo **KVR** Valvola di pressione differenziale, tipo **NRD**

Mantiene la pressione del condensatore e del ricevitore costante e sufficientemente alta

Il sistema di regolazione KVR ed NRD è utilizzato per mantenere una pressione costante e sufficientemente alta nel condensatore e nel ricevitore di liquido, in impianti frigoriferi e di condizionamento dell'aria con condensatore raffreddato ad aria.

Il KVR può essere usato anche con il regolatore della pressione del ricevitore, tipo KVD.

Caratteristiche:


- Controllo della pressione preciso e regolabile
- Ampio campo di capacità e di intervalli di funzionamento.
- Design con smorzatore delle pulsazioni
- · Soffietto in acciaio inossidabile
- Struttura compatta ad angolo per installazione in qualsiasi posizione
- Costruzione "ermetica" a brasare
- 1/4 in. per il collegamento di un manometro
- Disponibile con attacchi a cartella ed ODF a brasare
- KVR 12 KVR 22 e NRD: Può essere utilizzato nella seguente gamma EX: categoria 3 (zona 2)

Applicazioni

Applicazione

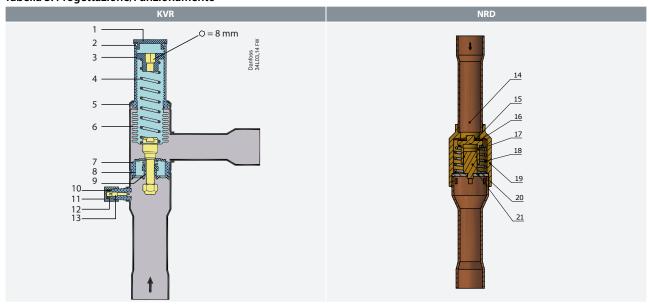
Tabella 1: Applicazione

Specifiche del prodotto

Dati tecnici

Tabella 2: Dati tecnici

Refrigeranti	R22, R32**, R134a, R290*, R404A, R407A, R407C, R407F, R407H, R410A**, R448A, R449A, R449B, R450A, R452A, R452B**, R454A*, R454B**, R454C*, R455A*, R507, R513A, R515B, R516A, R600*, R600a*, R1233zd(E)**, R1234ze(E)*, R1234yf*, R1270**Solo KVR 12 – KVR 22; vedere la nota sotto la tabella per ulteriori dettagli **Solo NRD
Campo regolazione	5 – 17,5 bar
Campo regulazione	Impostazione di fabbrica = 10 bar
Pressione d'esercizio massima	KVR: PS/MWP = 28 bar
Flessione d'esercizio massima	NRD: PS/MWP = 49 bar
Max. pressione di prova	KVR: Pe = 31 bar
Max. pressione di prova	NRD: Pe = 81 bar
Intervallo di temperatura del mezzo	KVR: -45 – 130 °C,
intervalio di temperatura del mezzo	NRD: -50 – 155 °C
Banda P	KVR 12 - 22 = 6.2 bar
Daliua F	KVR 28 – 35 = 5 bar
Differenziale di pressione di apertura minimo per NRD	Apertura iniziale: $\Delta p = 1,4$ bar


Questo prodotto (KVR 12 - KVR 22) è stato valutato per R290, R454A, R454C, R455A, R600, R600a, R1234ze(E), R1234yf, R1270 in base alla valutazione del potenziale rischio d'innesco secondo lo standard EN ISO80079-36. Gli attacchi a cartella sono stati approvati solo per i refrigeranti A1 e A2L.

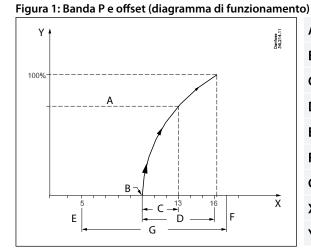
NRD è stato valutato per R32, R1270, R290, R452B, R454A, R454B, R454C R455A, R600, R600a, R1233zd(E), R1234ze(E), R1234yf, R1270 in base alla valutazione del potenziale rischio d'innesco secondo lo standard EN ISO80079-36.

Per un elenco completo dei refrigeranti approvati, visitare il sito http://store.danfoss.com/ ed eseguire la ricerca per singoli codici, laddove i refrigeranti sono elencati come parte dei dati tecnici.

Design e materiali

Tabella 3: Progettazione/Funzionamento

Regolatore della pressione di condensazione tipo KVR, e regolatore della pressione differenziale tipo NRD


1	Cappuccio di tenuta	8	Sede valvola	15	Rondella
2	Guarnizione	9	Smorzatore	16	Disco in Teflon
3	Vite di regolazione	10	Attacco manometro	17	Pistone
4	Molla principale	11	Cap.	18	Molla
5	Corpo valvola	12	Guarnizione	19	Corpo valvola
6	Soffietto di equalizzazione	13	Inserto	20	Guida
7	Otturatore valvola	14	Tubo in rame	21	Sede di tenuta

Il regolatore della pressione di condensazione KVR si apre in caso di aumento della pressione sul lato mandata, ossia quando la pressione nel condensatore raggiunge il valore impostato. La regolazione del KVR dipende unicamente dalla pressione di mandata. Le variazioni di pressione sul lato di ingresso del regolatore non influenzano il grado di apertura, poiché il regolatore KVR è dotato di soffietto di equalizzazione (6). Il soffietto ha un'area effettiva pari a quella della sede della valvola.

Il regolatore è inoltre dotato di un efficace smorzatore (9) per attenuare le pulsazioni che normalmente sono presenti in un impianto di refrigerazione.

Lo smorzatore aiuta ad assicurare una lunga vita lavorativa al regolatore senza compromettere la precisione della regolazione.

La valvola differenziale NRD inizia ad aprirsi quando la caduta di pressione nella valvola è di 1,4 bar.

Banda proporzionale

La banda proporzionale, o banda P, è la pressione necessaria per spostare l'otturatore della valvola dalla posizione chiusa (setpoint) alla posizione completamente aperto.

bar

Υ

Esempio

se la valvola è tarata per aprirsi a 10 bar e la banda proporzionale della valvola è 6,2, la valvola offrirà la massima capacità quando la pressione di aspirazione raggiungerà 16,2 bar.

Offset

L'offset è la pressione richiesta per spostare la piastra della valvola dalla posizione di chiuso (setpoint) al grado di apertura necessario per il carico effettivo. L'offset fa sempre parte della banda proporzionale.

Esempio con R22

È richiesta una temperatura di esercizio di 36 °C ~ 13 bar e la temperatura non deve scendere al di sotto di 27°C ~ 10 bar (setpoint). L'offset sarà quindi di 3 bar.

Dimensionamento

Per un funzionamento ottimale, è importante selezionare una valvola KVR in base all'applicazione e alle condizioni dell'impianto.

Per il dimensionamento della valvola KVR utilizzare i seguenti dati:

- Refrigerante: HCFC, HFC ed HC: KVR 12 KVR 22, HCFC e HFC non infiammabili: KVR 28 KVR 35
- Capacità evaporatore Q_a (capacità dell'impianto)
- Temperatura di evaporazione t_o in [°C]
- Temperatura di condensazione t in [°C]
- Tipo di attacco: a cartella o a brasare
- Dimensione attacco in [in]

Selezione della valvola

Esempio

Quando si seleziona la valvola appropriata può essere necessario convertire la capacità evaporatore effettiva usando fattori

di correzione.

Questo è necessario quando le condizioni nell'impianto sono diverse dalle condizioni nella tabella.

La selezione dipende inoltre da una perdita di carico accettabile attraverso la valvola.

Il seguente esempio illustra la procedura.

KVR in un'applicazione con capacità del liquido

- Refrigerante: Esempio con R22
- Capacità evaporatore: Q = 100 kW (capacità dell'impianto)
- Temperatura di evaporazione: t_o= -40 °C
- Temperatura di condensazione: t = 30 °C
- Tipo di attacco: A brasare
- Dimensioni attacco: 5/8 in

Passo 1

Determinare il fattore di correzione per la temperatura di evaporazione t_a.

Dalla tabella dei fattori di correzione, una temperatura di evaporazione di -40°C (R22) corrisponde a un fattore di

te / [°C]	-40	-30	-20	-10	0	10
R22	1,09	1,05	1,02	1	0,98	0,96
R134a	1,14	1,09	1,04	1	0,96	0,93
R404A, R507	1,18	1,11	1,05	1	0,95	0,92
R407C	1,12	1,08	1,04	1	0,97	0,93

Capacità dell'impianto x fattore di correzione = capacità riportate nella tabella

Passo 2

evaporatore corretta è $Qe = 100 \times 1,09 = 109,0 \text{ kW}$

Passo 3

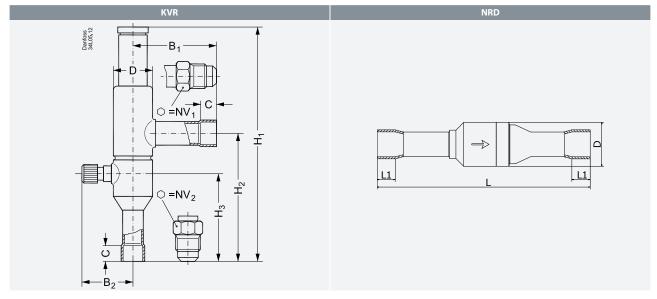
A questo punto selezionare la tabella capacità appropriata e scegliere la linea per la temperatura di condensazione $t_c = 30 \, ^{\circ}\text{C}.$

Usando la capacità dell'evaporatore corretta, selezionare una valvola che abbia una capacità equivalente o superiore con una perdita di carico accettabile.

KVR 12, KVR 15 e KVR 22 erogano 142,9 kW con una caduta di pressione di 1,6 bar nella valvola. In base alle dimensioni attacco richieste di 5/8 in. ODF, per questo esempio la scelta idonea è la KVR 15.

Passo 4

KVR 15, 5% in. attacco a brasare: N. codice 034L0097 (vedere elenco ordinazioni)



Selezione della valvola in base al calcolo della capacità

Per i calcoli di capacità estesi e la selezione della valvola basati su capacità e refrigeranti, consultare Coolselector®2. Le capacità nominali ed estese vengono calcolate con il motore di calcolo Coolselector®2 secondo gli standard ARI con le equazioni ASEREP basate sulle misure di laboratorio delle valvole selezionate.

Dimensioni

Tabella 4: Dimensioni

		Atta	ассо		NV1	NV2	H1	H2	НЗ		L1	B1	B2	C a bra-	øD	Peso
Tipo	A cartella		ODF a brasare			1442		П	113	_		, D1	62	sare	90	netto
	[in]	[mm]	[in]	[mm]	[mm]	[Kg]										
KVR 12	1/2	12	1/2	12	19	19	179	99	66	-	-	64	41	10	30	0,4
KVR 15	5/8	16	5/8	16	24	24	179	99	66	-	-	64	41	12	30	0,4
KVR 22	-	-	7/8	22	-	-	179	99	66	-	-	64	41	17	30	0,4
KVR 28	-	-	1 1/8	28	-	-	259	151	103	-	-	105	48	20	43	1
KVR 35	-	-	1 3/8	35	-	-	259	151	103	-	-	105	48	25	43	1
NRD	-	-	1/2	12	-	-	-	-	-	131	10	-	-	-	22	0,1

Ordinazione

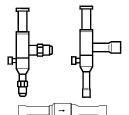


Tabella 5: KVR 12, KVR 15, KVR 22, KVR 28, KVR 35, NRD

Tipo	Capacità del liquido nominale (1) (Capacità del avaporatore) [kW]			Gas caldo nominale (1) (Capacità evapo- ratore) [kW]			Attacco a cartella.		- Codice n.	Attacco a brasare		Codice n.		
	R22	R134a	R404A/ R507	R407C	R22	R134a	R404A/ R507	R407C	[in]	[mm]	cour ce II.	[in]	[mm]	Cource II.
KVR 12	50,4	47,3	36,6	54,4	13,2	11,6	12	14,3	1/2	12	034L0091	1/2	-	034L0093
NVN 12	50,4	47,3	36,6	54,4	13,2	11,6	12	14,3	-	-	-	-	12	034L0096
KVR 15	50,4	47,3	36,6	54,4	13,2	11,6	12	14,3	5/8	16	034L0092	5/8	16	034L0097
KVR 22	50,4	47,3	36,6	54,4	13,2	11,6	12	14,3	-	-	-	7/8	22	034L0094
KVR 28	129	121	93,7	139,3	34,9	30,6	34,9	37,7	-	-	-	11/8	-	034L0095
NVN 20	129	121	93,7	139,3	34,9	30,6	34,9	37,7	-	-	-	-	28	034L0099
KVR 35	129	121	93,7	139,3	34,9	30,6	34,9	37,7	-	-	-	1 3/8	35	034L0100
NIPIO	-	-	-	-	-	-	-	-	-	-	-	1/2	-	020B1132
NRD	-	-	-	-	-	-	-	-	-	-	-	-	12	020B1136

⁽¹⁾ Per selezionare il prodotto per condizioni o refrigeranti differenti utilizzare Danfoss Coolselector°2. La capacità nominale si basa su:

- temperatura di evaporazione te = -10 °C
- temperatura di condensazione tc = 30 °C
- caduta di pressione attraverso la valvola
 - $^{\circ}$ $\Delta p = 0.2$ bar per la capacità del liquido
 - \circ $\Delta p = 0.4$ bar per la capacità del gas caldo
- offset = 3 bar

- 1/2 in / 12 mm, codice n. 011L1103
- 5/8 in / 16 mm, codice n. 011L1167

⁽²⁾ I KVR sono forniti senza bocchettoni. Bocchettoni disponibili separatamente:

Certificati, dichiarazioni e approvazioni

L'elenco contiene tutti i certificati, le dichiarazioni e le approvazioni per questo tipo di prodotto. Il singolo codice può avere alcune o tutte queste approvazioni e alcune approvazioni locali potrebbero non essere presenti nell'elenco.

Alcune approvazioni possono cambiare nel tempo. È possibile controllare lo stato più aggiornato su danfoss.com o contattare il rappresentante Danfoss di zona in caso di domande.

Tabella 6: Certificati, dichiarazioni e approvazioni

Nome file	Tipo di documento	Argomento documento	Autorità di omologazione
Danfoss 034L9625.AB	Dichiarazione del costruttore	PED/RoHS	Danfoss
Danfoss 034R9541.AA	Dichiarazione del costruttore	RoHS cinese	Danfoss
EAC RU Д-DK.БЛ08.В.00191_18	Dichiarazione EAC	EAC	EAC
LLC CDC EURO-TYSK UA.089.D.00188-17	Dichiarazione UA	TEDESCO	TEDESCO
UL SA7200	Certificato UL	UL	UL

Assistenza online

Danfoss offre svariati strumenti di supporto insieme ai propri prodotti, tra cui informazioni digitali sui prodotti, software, app per dispositivi mobili e consulenza da parte di esperti. Scopri le opzioni qui sotto.

Danfoss Product Store

Danfoss Product Store è il tuo punto di riferimento per tutto ciò che riguarda i prodotti, indipendentemente da dove ti trovi e in quale settore del raffreddamento lavori. Accedi rapidamente a informazioni essenziali come specifiche del prodotto, codici, documentazione tecnica, certificazioni, accessori e altro ancora.

Inizia a navigare su store.danfoss.com.

Trova la documentazione tecnica

Trova la documentazione tecnica necessaria per la preparazione e la messa in funzione del tuo progetto. Accedi direttamente alla nostra raccolta ufficiale di schede tecniche, certificati e dichiarazioni, manuali e guide, modelli e disegni 3D, case stories, brochure e molto altro ancora.

Inizia subito la tua ricerca su www.danfoss.com/en/service-and-support/documentation.

Danfoss Learning

Danfoss Learning è una piattaforma di apprendimento online gratuita. Include corsi e materiali appositamente studiati per aiutare ingegneri, installatori, tecnici di assistenza e grossisti a comprendere meglio prodotti, applicazioni, argomenti di settore e tendenze che ti aiuteranno a svolgere meglio il tuo lavoro.

Crea gratuitamente il tuo account Danfoss Learning su www.danfoss.com/en/service-and-support/learning.

Ottieni informazioni e assistenza locali

I siti web Danfoss locali sono le principali fonti di supporto e di informazioni sulla nostra azienda e sui nostri prodotti. Trova la disponibilità dei prodotti, ricevi le ultime notizie regionali o mettiti in contatto con un esperto nelle vicinanze, tutto nella tua lingua.

Trova il tuo sito web Danfoss locale qui: www.danfoss.com/en/choose-region.

Coolselector®2 - trova i componenti migliori per il tuo sistema HVAC/R

Coolselector®2 consente a ingegneri, consulenti e progettisti di trovare e ordinare i componenti migliori per gli impianti di refrigerazione e condizionamento dell'aria. Basta eseguire i calcoli in base alle condizioni d'esercizio e quindi scegliere la configurazione migliore per la progettazione del sistema.

Scarica Coolselector®2 gratuitamente all'indirizzo coolselector.danfoss.com.

Danfoss S.r.l.

Climate Solutions • danfoss.it • +39 069 4809 900 • cscitaly@danfoss.com

Qualsiasi informazione, incluse, in via meramente esemplificativa, le informazioni sulla selezione del prodotto, la sua applicazione o uso, il design, il peso, le dimensioni, la capacità o qualsiasi altro dato tecnico contenuto nei manuali dei prodotti, nelle descrizioni dei cataloghi, pubblicità, ecc. e resa disponibile sia in forma scritta, orale, elettronica, online o tramite download, sarà considerata puramente informativa, esarà considerata vincolante solamente se e nella misura in cui ne sia fatto esplicito riferimento in un preventivo o in una conferma d'ordine. Danfoss non si assume alcuna responsabilità per eventuali errori nei cataloghi, brochure, video e altro materiale.

Danfoss si riserva il diritto di modificare i propri prodotti senza alcun preavviso. Ciò vale anche per i prodotti già in ordine ma non consegnati, sempre che tali modifiche si possano apportare senza modificare la forma, la misura o la funzionalità del prodotto.

Tutti i marchi di fabbrica citati sono di proprietà di Danfoss A/S o delle società del gruppo Danfoss. Il nome e il logo Danfoss sono marchi depositati di Danfoss A/S. Tutti i diritti riservati.