O3
APPLICAZIONI
INNOVATIVE

POMPA DI CALORE PER PRODUZIONE ACQUA CALDA SANITARIA HP T1 200 – HP T1 250

Le pompe di calore Sunwood utilizzano l'energia termica dell'aria per la produzione di acqua calda ad uso sanitario. Il processo avviene nel modo più efficace e redditizio, con C.O.P. medi > 3.

La convenienza energetica delle pompe di calore Sunwood permette quindi di salvaguardare l'ambiente, utilizzando in gran parte l'energia dell'irraggiamento solare.

La facilità di installazione, il funzionamento silenzioso e affidabile e la ridottissima necessità di manutenzione, completano i vantaggi di questo sistema altamente ecologico ed economico.

Il modulo Sunwood produce acqua calda sanitaria impiegando la consolidata tecnologia delle pompe di calore.

FLESSIBILITÀ E BENEFICI DI HEAT PUMP

Recupero di energia di scarto: l'unita può essere installata vicino alla cucina, nella stanza adibita per la caldaia o nel garage, praticamente in ogni stanza con una discreta quantità di calore di scarto così che abbia elevata efficienza energetica anche con temperature esterne molto basse in inverno.

Acqua calda e deumidificazione: l'unita può essere posizionata in lavanderia. Quando produce acqua calda, abbassa di conseguenza la temperatura ambiente e deumidifica la stanza.

Raffrescamento della dispensa: l'unita può essere posizionata nella dispensa poiché l'abbassamento della temperature ambiente aiuta a mantenere fresco il cibo.

Acqua calda e ventilazione di aria fresca: l'unita può essere posizionata nel garage, in palestra, nel seminterrato etc. Quando produce acqua calda, raffredda la stanza e fornisce aria fresca.

Compatibile con diverse fonti di energia: l'unita può lavorare con una seconda fonte di energia come pannelli solari, pompe di calore esterne, caldaie o altre differenti fonti energetiche. La funzione Fotovoltaico (PV), consente di utilizzare al meglio l'energia autoprodotta da un eventuale impianto fotovoltaico.

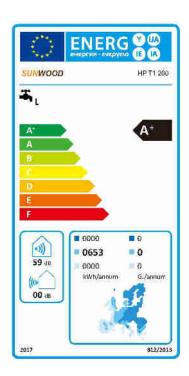
Riscaldamento ecologico ed economico: l'unità è una delle più efficienti ed economiche alternative sia alle caldaie a combustibile fossile che ai sistemi di riscaldamento convenzionale. Utilizzando il calore rinnovabile presente nell'aria, consuma molto meno energia.

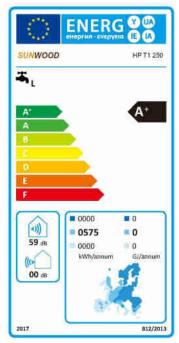
Funzioni multiple: la particolare disposizione di ingresso e uscita aria rende l'unità adatta a varie modalità di collegamento. A seconda di come viene installata, l'unità può lavorare semplicemente come pompa di calore ma anche come movimentatore di aria fresca, deumidificatore o dispositivo di recupero energetico..

MODELLI DISPONIBILI

Per adattarsi alle diverse esigenze impiantistiche, l'unità HEAT PUMP è disponibile nella versione HP T1 con serpentino ausiliario per utilizzo in combinazione con pannelli solari termici.

CARATTERISTICHE TECNICHE

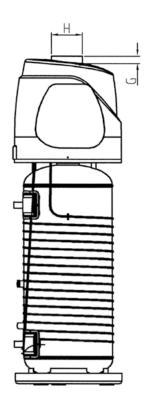

- Serbatoio in acciaio con vetrificazione a doppio strato
- Anodo di magnesio anticorrosione per assicurare la durabilità del serbatoio
- Condensatore avvolto esternamente al boiler esente da incrostazioni e contaminazione gas-acqua
- Isolamento termico in poliuretano espanso (PU) ad alto spessore (42 mm).
- Rivestimento esterno in materiale plastico grigio RAL 9006
- Coperchio superiore in plastica isolato acusticamente
- Compressore ad alta efficienza con refrigerante R134A
- Dispositivi di sicurezza per alta e bassa pressione gas
- Resistenza elettrica disponibile nell'unità come back-up (con termostato integrato con sicurezza a 90°C), che assicura acqua calda a temperatura costante anche in condizioni invernali estreme
- Ciclo di disinfezione settimanale
- Funzione Fotovoltaica (PV)

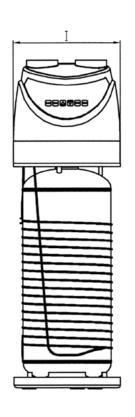


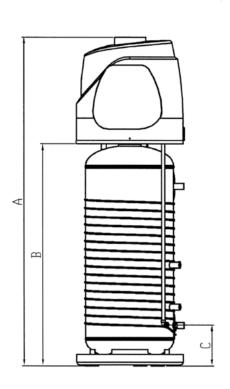
CARATTERISTICHE TECNICHE

DATI TECNICI		HP T1 200	HP T1 250
Classe energetica Erp / Profilo di carico (1)		A+ / L	A+ / L
Livello di potenza sonora (interno) Lw	db (A)	≤ 60	≤ 60
Consumo Elettrico Annuale (1)	kWh	745	757
Produzione oraria di acqua calda	L/h	52	51,4
Volume dell'accumulo	L	200	250
Potenza termica nominale pompa di calore	W	2000	2000
Potenza assorbita nominale pompa di calore	W	590	590
COP _{DHW} (EN:16147) (1)		3,29	3,25
Resistenza elettrica ausiliaria	W	1500	1500
"Massima corrente in ingresso (pompa di calore + resistenza elettrica ausiliaria)"	А	4+6,5	4+6,5
Range temperatura di set point ACS (pompa di calo- re+resistenza elettrica)	°C	28÷75	28÷75
Intervallo di temperatura di funzionamento (T. aria)	°C	-7 ÷ 43	-7 ÷ 43
Intervallo di temperatura di funzionamento con resistenza elettrica ausiliaria (T. aria)	°C	-15 ÷ 43	-15 ÷ 43
Tipo di refrigerante		R 134a	R 134a
Quantità di refrigerante	g	900	950
Pressione di progetto del refrigerante in mandata	bar	26	26
Pressione di progetto del refrigerante in aspirazione	bar	12	12
COMPRESSORE			
Tipo di compressore		Rotary	Rotary
Marca		GMCC	GMCC
Potenza elettrica	W	635	635
Dispositivo di laminazione		Valvola di laminazione elettronica	
LATO ARIA			
Flusso d'aria nominale	m³/h	460	460
Flusso d'aria con 60 Pa residui	m³/h	1	1
Diametro dei condotti entrata/uscita aria	mm	170/170	170/170
SERBATOIO SERBATOIO			
Pressione massima di esercizio	Bar	7	7
Trattamento interno		vetrificazione	
Protezione interna		1 anodo di magnesio	2 anodi di magnesio
Tipologia di scambiatore della pompa di calore		condensatore avvolto esternamente	
Superficie di scambio del serpentino solare	m²	0,57	0,57
DIMENSIONI ED INGOMBRI			
Dimensioni prodotto	DxH (mm)	580x1880	580x2165
Dimensioni imballo	LxWxH (mm)	680x680 x1960	710x710 x2230
		1	
Peso netto	Kg	95	105

NOTE:

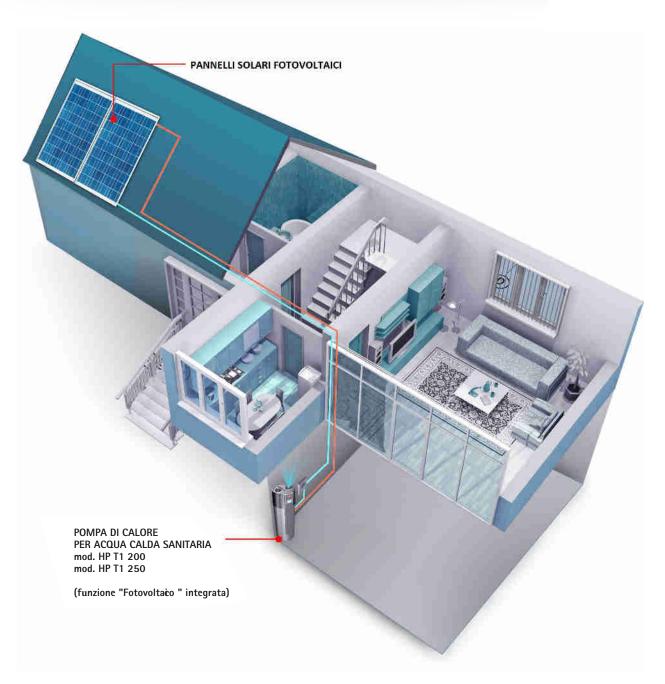

(1) Potenza termica e assorbita riferita alle seguenti condizioni ambientali : 20 °C temperatura a bulbo secco, 15 °C temperatura a bulbo bagnato, temperatura di ingresso acqua fedda 10 °C, temperatura acqua calda 53 °C, profilo di carico come indicato.

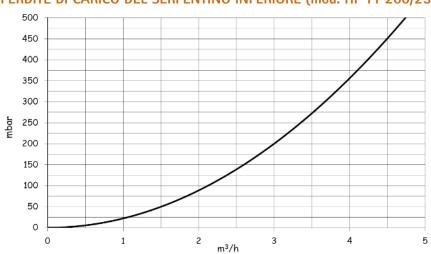

Durante il ciclo di disinfezione, la temperatura massima viene innalzata a 70°C dalla resistenza ausiliaria.


O3
APPLICAZIONI
INNOVATIVE

POMPA DI CALORE PER PRODUZIONE ACQUA CALDA SANITARIA HP T1 200 – HP T1 250

FLESSIBILITÀ E BENEFICI DI HEAT PUMP




Dmensioni (mm)	HP T1 200	HP T1 250
A	1940	2115
В	1228	1416
С	225	225
D	550	550
E	320	320
F	220	220
G	42	42
Н	170	170
I	Ø 580	Ø 580
L	220	220
M	550	550
N	1030	1270

Le quote sono esmresse in mm.

PERDITE DI CARICO DEL SERPENTINO INFERIORE (mod. HP T1 200/250

